sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 15

Determinants of order 2

- 1. Label the following statements as true or false.
 - (a) The function det : $M_{2\times 2}(F) \to F$ is a linear transformation.
 - (b) The determinant of a 2×2 matrix is a linear function of each row of the matrix when the other row is held fixed.
 - (c) If $A \in M_{2 \times 2}(F)$ and det(A) = 0, then A is invertible.
 - (d) If *u* and *v* are vectors in \mathbb{R}^2 emanating from the origin, then the area of the parallelogram having *u* and *v* as adjacent sides is

$$\det \left(\begin{array}{c} u \\ v \end{array} \right).$$

- (e) A coordinate system is right-handed if and only if its orientation equals 1.
- 2. Compute the determinants of the following matrices in $M_{2\times 2}(\mathbb{R})$.

a)
$$\begin{pmatrix} 6 & -3 \\ 2 & 4 \end{pmatrix}$$
 b) $\begin{pmatrix} -5 & 2 \\ 6 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 8 & 0 \\ 3 & -1 \end{pmatrix}$

3. Compute the determinants of the following matrices in $M_{2\times 2}(\mathbb{C})$.

a)
$$\begin{pmatrix} -1+i & 1-4i \\ 3+2i & 2-3i \end{pmatrix}$$
 b) $\begin{pmatrix} 5-2i & 6+4i \\ -3+i & 7i \end{pmatrix}$ c) $\begin{pmatrix} 2i & 3 \\ 4 & 6i \end{pmatrix}$

- 4. For each of the following pairs of vectors u and v in \mathbb{R}^2 , compute the area of the parallelogram determined by u and v.
 - (a) u = (3, -2) and v = (2, 5)
 - (b) u = (1,3) and v = (-3,1)
 - (c) u = (4, -1) and v = (-6, -2)
 - (d) u = (3, 4) and v = (2, -6)
- 5. Prove that if *B* is the matrix obtained by interchanging the rows of a 2×2 matrix *A*, then det(*B*) = $-\det(A)$.
- 6. Prove that if the two columns of $A \in M_{2\times 2}(F)$ are identical, then det(A) = 0.
- 7. Prove that $det(A^t) = det(A)$ for any $A \in M_{2 \times 2}(F)$.

- 8. Prove that if $A \in M_{2 \times 2}(F)$ is upper triangular, then det(A) equals the product of the diagonal entries of A.
- 9. Prove that $det(AB) = det(A) \cdot det(B)$ for any $A, B \in M_{2 \times 2}(F)$.
- 10. The **classical adjoint** of a 2×2 matrix $A \in M_{2 \times 2}(F)$ is the matrix

$$C = \left(\begin{array}{cc} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{array}\right).$$

Prove that

- (a) $CA = AC = [\det(A)]I.$
- (b) det(C) = det(A).
- (c) The classical adjoint of A^t is C^t .
- (d) If A is invertible, then $A^{-1} = [\det(A)]^{-1}C$.

11. Let $\delta : M_{2 \times 2}(F) \to F$ be a function with the following three properties.

- (i) δ is a linear function of each row of the matrix when the other row is held fixed.
- (ii) If the two rows of $A \in M_{2 \times 2}(F)$ are identical, then $\delta(A) = 0$.
- (a) If *I* is the 2 × 2 identity matrix, then $\delta(I) = 1$.

Prove that $\delta(A) = \det(A)$ for all $A \in M_{2 \times 2}(F)$.

12. Let $\{u, v\}$ be an ordered basis for \mathbb{R}^2 . Prove that

$$O\left(\begin{array}{c} u\\ v\end{array}\right) = 1$$

if and only if $\{u, v\}$ forms a right-handed coordinate system.
