# Department of Mathematical and Computational Sciences <br> National Institute of Technology Karnataka, Surathkal 

sam.nitk.ac.in

## Advanced Linear Algebra (MA 409) <br> Problem Sheet - 15

Determinants of order 2

1. Label the following statements as true or false.
(a) The function det: $M_{2 \times 2}(F) \rightarrow F$ is a linear transformation.
(b) The determinant of a $2 \times 2$ matrix is a linear function of each row of the matrix when the other row is held fixed.
(c) If $A \in M_{2 \times 2}(F)$ and $\operatorname{det}(A)=0$, then $A$ is invertible.
(d) If $u$ and $v$ are vectors in $\mathbb{R}^{2}$ emanating from the origin, then the area of the parallelogram having $u$ and $v$ as adjacent sides is

$$
\operatorname{det}\binom{u}{v}
$$

(e) A coordinate system is right-handed if and only if its orientation equals 1.
2. Compute the determinants of the following matrices in $M_{2 \times 2}(\mathbb{R})$.
a) $\left(\begin{array}{rr}6 & -3 \\ 2 & 4\end{array}\right)$
b) $\left(\begin{array}{rr}-5 & 2 \\ 6 & 1\end{array}\right)$
c) $\left(\begin{array}{rr}8 & 0 \\ 3 & -1\end{array}\right)$
3. Compute the determinants of the following matrices in $M_{2 \times 2}(\mathbb{C})$.
a) $\left(\begin{array}{rr}-1+i & 1-4 i \\ 3+2 i & 2-3 i\end{array}\right)$
b) $\left(\begin{array}{rr}5-2 i & 6+4 i \\ -3+i & 7 i\end{array}\right)$
c) $\left(\begin{array}{rr}2 i & 3 \\ 4 & 6 i\end{array}\right)$
4. For each of the following pairs of vectors $u$ and $v$ in $\mathbb{R}^{2}$, compute the area of the parallelogram determined by $u$ and $v$.
(a) $u=(3,-2)$ and $v=(2,5)$
(b) $u=(1,3)$ and $v=(-3,1)$
(c) $u=(4,-1)$ and $v=(-6,-2)$
(d) $u=(3,4)$ and $v=(2,-6)$
5. Prove that if $B$ is the matrix obtained by interchanging the rows of a $2 \times 2$ matrix $A$, then $\operatorname{det}(B)=$ $-\operatorname{det}(A)$.
6. Prove that if the two columns of $A \in M_{2 \times 2}(F)$ are identical, then $\operatorname{det}(A)=0$.
7. Prove that $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$ for any $A \in M_{2 \times 2}(F)$.
8. Prove that if $A \in M_{2 \times 2}(F)$ is upper triangular, then $\operatorname{det}(A)$ equals the product of the diagonal entries of $A$.
9. Prove that $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ for any $A, B \in M_{2 \times 2}(F)$.
10. The classical adjoint of a $2 \times 2$ matrix $A \in M_{2 \times 2}(F)$ is the matrix

$$
C=\left(\begin{array}{rr}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{array}\right) .
$$

Prove that
(a) $C A=A C=[\operatorname{det}(A)] I$.
(b) $\operatorname{det}(C)=\operatorname{det}(A)$.
(c) The classical adjoint of $A^{t}$ is $C^{t}$.
(d) If $A$ is invertible, then $A^{-1}=[\operatorname{det}(A)]^{-1} C$.
11. Let $\delta: M_{2 \times 2}(F) \rightarrow F$ be a function with the following three properties.
(i) $\delta$ is a linear function of each row of the matrix when the other row is held fixed.
(ii) If the two rows of $A \in M_{2 \times 2}(F)$ are identical, then $\delta(A)=0$.
(a) If $I$ is the $2 \times 2$ identity matrix, then $\delta(I)=1$.

Prove that $\delta(A)=\operatorname{det}(A)$ for all $A \in M_{2 \times 2}(F)$.
12. Let $\{u, v\}$ be an ordered basis for $\mathbb{R}^{2}$. Prove that

$$
O\binom{u}{v}=1
$$

if and only if $\{u, v\}$ forms a right-handed coordinate system.

